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Abstract
Adversarial attack on point clouds plays a vital role in eval-
uating and improving the adversarial robustness of 3D deep
learning models. Existing attack methods are mainly applied
by point perturbation in a non-manifold manner. In this pa-
per, we formulate a novel manifold attack, which deforms the
underlying 2-manifold surfaces via parameter plane stretch-
ing to generate adversarial point clouds. First, we represent
the mapping between the parameter plane and underlying sur-
face using generative-based networks. Second, the stretching
is learned in the 2D parameter domain such that the gener-
ated 3D point cloud fools a pretrained classifier with minimal
geometric distortion. Extensive experiments show that adver-
sarial point clouds generated by manifold attack are smooth,
undefendable and transferable, and outperform those samples
generated by the state-of-the-art non-manifold ones.

Introduction
With the advance of depth sensing devices and 3D deep
learning techniques, applications of 3D point cloud percep-
tion are now booming. However, 3D deep learning models
for point clouds are vulnerable to adversarial attacks as re-
ported in (Xiang, Qi, and Li 2019), i.e., imperceptible modi-
fications on input point clouds can lead to erroneous predic-
tions of victim models, hindering their deployment in the
real world, especially for safety-critical scenarios. There-
fore, investigating adversarial attack on point clouds is crit-
ical for evaluating and improving the adversarial robustness
of 3D deep learning models.

Due to the unstructured nature of point clouds, adver-
sarial attack on them can be uniquely applied by dropping
salient points (Zheng et al. 2019; Wicker and Kwiatkowska
2019) or adding adversarial points, clusters and objects (Xi-
ang, Qi, and Li 2019). Meanwhile, mainstream adversarial
attack approaches apply perturbation to point coordinates,
e.g., via extending from image-based attacks (Xiang, Qi, and
Li 2019; Liu, Yu, and Su 2019). Despite their success in at-
tack, the generated adversarial point clouds tend to contain

*These authors contributed equally.
†Corresponding author.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Adversarial point clouds of category TABLE gen-
erated by non-manifold and manifold attack that mislead
a victim model to recognize as CHAIR: (a) the adversar-
ial point cloud generated by non-manifold attacks, e.g., I-
FGM (Dong et al. 2020), contains clearly visible outliers,
and thus is easily defended and hardly transferable to un-
seen models; (b) the adversarial point cloud generated by our
manifold attack is more smooth, undefendable and transfer-
able. Note that the adversarial point cloud in (b) can be cap-
tured if textile is put on the table in the real world, such that
humans are not aware of the attack.

clearly visible outliers (Dong et al. 2020; Xiang, Qi, and Li
2019); see Fig. 1(a). Besides non-smoothness, most adver-
sarial attacks on point clouds can hardly transfer to different
classification models, and can be easily defended by adver-
sarial defense techniques. Latest studies employ generative-
based networks (Zhou et al. 2020), geometry-aware objec-
tives (Wen et al. 2022), etc., to alleviate the above issues.
However, very few attack methods can generate adversarial
point clouds satisfying all three properties simultaneously,
i.e., smoothness, undefendability, and transferability, since
their perturbations are applied in non-manifold manners.

Generally, point clouds of 3D objects are assumed to
be sampled along 2-manifold surfaces embedded in 3D
Euclidean space (Gu, Gortler, and Hoppe 2002; Spanier
1989). If the perturbation is applied to a point cloud in a
non-manifold manner without modifying the underlying 2-
manifold surface, its adversarialness may only hold for at-
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tacking a specified victim model but fail for other unseen
ones. Besides, since the perturbation is applied out of the
underlying surface, it will introduce noticeable outliers and
thus can be defended by outlier removal techniques easily.
These issues motivate us to design an attack methodology
whose generated adversarial point clouds are smooth, trans-
ferable to unseen models and undefendable against adversar-
ial defense, by intentionally applying perturbation to the un-
derlying 2-manifold surfaces of point clouds; see Fig. 1(b).

In this paper, we formulate a novel manifold attack that
perturbs point clouds by deforming their underlying sur-
faces. Specifically, we first utilize a manifold auto-encoder
to learn the mapping between the 2D parameter plane and
the underlying 2-manifold surface of point cloud embedded
in 3D space, and then the deformation of surface can be re-
alized by stretching the parameter plane instead, guided by a
pretrained classifier to obtain adversarialness. In particular,
we utilize thin plate spline (TPS) transformation (Bookstein
1989) to stretch the parameter plane, such that only small
deformation is introduced for better smoothness. Besides,
we observe that manifold attack can be hidden in the hu-
man psyche, since its perturbation could be associated with
the disturbances in the real world to become justified, as
in (Xiang, Qi, and Li 2019); see Fig. 1. We validate the ef-
fectiveness of our manifold attack framework by attacking
multiple different deep classification models and adversar-
ial defense methods. Extensive experimental results show
that smooth adversarial point clouds generated by our man-
ifold attack framework are undefendable against adversar-
ial defenses and transferable to unseen classification models
even under defense, which outperform those generated by
the state-of-the-art methods in non-manifold manners.

Overall, our contribution is summarized as follows:

• We are the first to formulate manifold attack on 3D point
clouds by perturbing the underlying surfaces explicitly.

• We devise a smooth perturbation mechanism that de-
forms the underlying 2-manifold surfaces of point clouds
via parameter plane stretching.

• We show by experiments that manifold attack achieves
superior performance to non-manifold ones in both un-
defendability and transferability.

Related Work
Adversarial Attacks on Point Clouds. Adversarial attack
aims to generate an example that will lead the victim net-
work to make a mistake, and has been successfully extended
from 2D image classification (Szegedy et al. 2014; Goodfel-
low, Shlens, and Szegedy 2015; Moosavi-Dezfooli, Fawzi,
and Frossard 2016; Carlini and Wagner 2017; Yuan et al.
2019) to that of 3D point clouds. According to the way
to apply adversarial attacks, current approaches can be di-
vided into three categories: addition-based, deletion-based
and perturbation-based. Addition-based methods lead to the
mistakes of models by adding independent points, clusters or
objects (Xiang, Qi, and Li 2019). Deletion-based methods
influence the classifier by dropping critical points (Zheng
et al. 2019; Yang et al. 2019; Wicker and Kwiatkowska

2019; Zhang et al. 2021). Perturbation-based methods ap-
ply attacks by perturbing existing points (Xiang, Qi, and Li
2019; Liu, Yu, and Su 2019; Zhao et al. 2020; Kim et al.
2021; Wen et al. 2022; Huang et al. 2022; Liu and Hu
2022; Tang et al. 2022c,d). In this paper, we only consider
perturbation-based methods.
Perturbation-based 3D Adversarial Attacks. Xiang, Qi,
and Li (2019) and Liu, Yu, and Su (2019) pioneered the
perturbation-based 3D adversarial attack by extending C&W
attack (Carlini and Wagner 2017) and FGSM (Goodfellow,
Shlens, and Szegedy 2015) under l2-norm constraint. In-
stead of manipulating local points, Zhao et al. (2020) pro-
posed an isometric transformation attack that can fool 3D
deep learning models using simple rotations. To avoid visi-
ble outliers, Kim et al. (2021) proposed to perturb a minimal
subset of points, while Wen et al. (2022) and Huang et al.
(2022) applied geometry-aware objectives/constraints.

To exploit deep learning techniques for improving adver-
sarial attack, generative-based attack methods perturb points
in the latent space by using auto-encoder (AE) (Hinton and
Salakhutdinov 2006), variational AE (Kingma and Welling
2013) or generative adversarial network (GAN) (Goodfel-
low et al. 2014). Hamdi et al. (2020) proposed an AE-based
attack model called AdvPC, that optimizes the perturbation
for fooling before passing through the AE to enforce less de-
pendent on the victim network and generalize better to dif-
ferent networks. Zhou et al. (2020) employed GAN in gen-
erating adversarial point clouds with target labels, and thus
are less perceptible. Lee et al. (2020) generated adversarial
point clouds by directly adding perturbation noise into the
latent space of AEs.

Our manifold attack is also generative-based. Different
from the above approaches that add perturbations in the la-
tent space of deep networks, we aim to stretch the under-
lying 2-manifold surfaces. Although their latent spaces are
also considered to be manifold, they are characterized as dis-
tribution property w.r.t. a dataset, but not geometric property
w.r.t. a surface. We notice that LG-GAN (Zhou et al. 2020)
also mentioned their relationship with the manifold concept.
Differently, they enforced the points to be adjoined to the
manifold surface after applying perturbation. Namely, LG-
GAN restricts the perturbation to the manifold, while our
approach perturbs the manifold directly.
Deep Learning for Point Clouds and 2-manifold Repre-
sentation. Since PointNet (Qi et al. 2017a) pioneered the
processing of point clouds directly using deep learning tech-
niques (Tang et al. 2022b), a large body of researches have
been studied (Qi et al. 2017b; Wang et al. 2019; Li et al.
2018; Chen et al. 2022; Tang et al. 2022a). We aim to evalu-
ate and improve their robustness to adversarial attacks.

Another related direction is 2-manifold representation
learning of 3D surfaces (Gu, Gortler, and Hoppe 2002;
Sander et al. 2003). Yang et al. (2018) proposed FoldingNet,
which learns to deform a canonical 2D grid onto the un-
derlying 3D object surface of a point cloud. To handle ob-
jects with larger genus numbers, they further devised an ex-
tension, i.e, TearingNet (Pang, Li, and Tian 2021), which
can learn more topology-friendly representations. Atalas-
Net (Groueix et al. 2018) represents a 3D shape as a col-
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lection of parametric surface elements, instead of one, and
thus can handle more complex shapes. We also aim to repre-
sent point cloud shapes in 2-manifold, and we choose Fold-
ingNet in our work for its simplicity. Differently, the 2-
manifold representation is utilized for applying adversarial
attack, which has not been investigated before.

Problem Formulation
Preliminary. Given a point cloud P ∈ Rn×3 sampled from
the object surface S and its label y ∈ Z, perturbation-based
adversarial attack aims to mislead a 3D deep classification
model by feeding an adversarial point cloud P adv instead of
P via applying an intentionally designed perturbation, such
that the model makes an error prediction.
Non-manifold Attack. A classic adversarial attack on point
cloud, e.g., Xiang, Qi, and Li (2019), is formulated as:

P adv = P + σ, (1)

where σ ∈ Rn×3 is the perturbation offset in the 3D Eu-
clidean space. Since the perturbation is not applied on the
underlying surface S , the adversarial attack is in a non-
manifold manner.

In fact, the permutation in non-manifold attack tends to
generate out-of-surface points which can be removed by
simple techniques of outlier removal (Zhou et al. 2019), and
thus is easy to defend. Moreover, since the intrinsic property
of the surface almost maintains, the success of adversarial
attack is attributable to a certain blind spot of the specified
victim deep model, instead of the ambiguity of the modified
shape. Therefore, these adversarial point clouds are hardly
transferable to other unseen models.
Manifold Attack. We aim to investigate generating adver-
sarial point clouds in a manifold manner. Specifically, we
impose a “virtual force” to slightly deform the underlying
surface S of P for fooling the victim model, and thus obtain
the adversarial surface:

Sadv = Def(S), (2)

where Def(·) is the perturbation function for deformation.
Therefore, the corresponding adversarial point cloud of P ,
i.e., P adv , is the new point set distributed along Sadv .
Parameter Plane Stretching for Deformation in Manifold
Attack. The deformation for manifold attack in Eqn. 2 can
be implemented in many different ways. In this paper, we
only consider deforming the surface S in the tangent space.

Suppose there exists a mapping function M from the pa-
rameter plane u to 2-manifold surface S (Hormann, Polthier,
and Sheffer 2008):

M : u −→ S. (3)

We can further simplify the problem of deforming in the
tangent space to stretching in the parameter plane domain.
Specifically, we first apply a 2D transformation τ to the pa-
rameter plane u,

uadv = τ(u), (4)
and then feed the stretched uadv into M, obtaining the de-
formed surface of S ,

Sadv = M(uadv). (5)

Discussion. In contrast to non-manifold attack, manifold
attack changes the underlying surfaces of point clouds, and
thus brings “inherent” adversarialness. Therefore, adversar-
ial point clouds generated by manifold attack are more unde-
fendable and transferable. Besides, by utilizing the parame-
ter plane as a bridge, manifold attack via complex 3D defor-
mation of surface is finally reduced to via simple 2D stretch
of parameter plane, facilitating finding feasible solutions of
adversarial perturbation.

Method
In this section, we will first describe how to represent the
manifold attack on surfaces using neural networks, and then
introduce our framework for attacking point clouds and its
training scheme.

Deep Representation of Manifold Attack
Deep Representation of Mapping. We utilize neural net-
works to represent the mapping M between parameter plane
and 2-manifold surface in Eqn. 3. In specific, one network
EM is utilized to learn the representation of mapping M,
i.e., θM, from S and its parameter plane uS :

θM = EM(S, uS), (6)

and another network DM to learn the generating of surface
Ŝ from uS and θM:

Ŝ = DM(θM, uS). (7)

By enforcing Ŝ to be S , the mapping denoted in Eqn. 3 is
represented with neural networks.
Attack under Mapping Representation. With the deep
representation of mapping θM fixed, adversarial attack can
be realized by parameter plane stretching following Eqn. 4:

Sadv = DM(θM, uadv
S ) = DM (θM, τ(uS)) . (8)

Manifold Attack Framework for Point Clouds
Since point cloud P derives from its inherent 2-manifold
surface S , we devise a novel manifold attack framework for
point clouds by extending the deep representation of mani-
fold attack on surfaces. It consists of three key components:
manifold auto-encoder, TPS-based parameter plane stretch-
ing, and adversarial point cloud generation. Please refer to
Fig. 2 for demonstration.
Manifold Auto-encoder. We use an auto-encoder to imple-
ment the deep representation of M. Given a point cloud P
as input, the encoder E outputs the deep mapping represen-
tation θP , and then the decoder D generate P̄ to reconstruct
P , by folding the fixed parameter plane u denoted with n×n
2D point grid under the guidance of θP :

P̄ = D(θP , u), with θP = E(P ).

To prevent outlier points, we use Hausdorff distance to su-
pervise the reconstruction:

Lrec(P̄ , P ) = max
(
DH(P̄ , P ), DH(P, P̄ )

)
, (9)

where DH(P̄ , P ) = max
i∈{1,...,n}

min
j∈{1,...,n}

∥∥P̄i − Pj

∥∥2
2
. Note

that, we omit the input u of E , since it is fixed and thus does
not affect learning.
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Figure 2: Demonstration of the manifold attack framework for point clouds.

TPS-based Parameter Plane Stretching. To facilitate
small and smooth distortion, we utilize thin plate spline
(TPS) transformation (Bookstein 1989) to stretch u. Specif-
ically, we first sample m ×m control points uc evenly, and
then adopt an offset prediction network Fo to learn the offset
of uc along the parameter plane:

δc = Fo(P ),

and finally the offset will be propagated to all points in u by
interpolation, forming the deformed point grid û:

û = τ(u) = OPtps(u, uc, δc).

By perturbing a small number of control points, TPS trans-
formation enforces the stretching from u to û to be smooth.
Adversarial Point Cloud Generation. By feeding the
stretched parameter plane û together with the deep mapping
representation θP to the decoder D, point cloud P̂ can be
reconstructed via:

P̂ = D(θP , û),

under the supervision of reconstruction loss Lrec(P̂ , P ) as
in Eqn. 9 to enforce the perturbation to be small.

To further make P̂ to be adversarial, we enforce it to mis-
lead a pretrained deep classifier C, e.g., PointNet (Qi et al.
2017a), by applying the loss defined as follows:

Ladv(P̂ ) = max(C(P̂ )[y]− 1/k, 0), (10)

where y is the ground truth category of P , C(P̂ )[y] is the
output of classifier C on P̂ of category y, and k is the total
number of categories. Since it is impossible that prediction
confidences on all categories are lower than 1/k, there must
be an incorrect category predicted with a higher confidence.

Training Scheme
We first pretrain the manifold auto-encoder {E ,D} and the
classifier C, and then train the manifold attack framework
to learn TPS transformation to generate adversarial point

clouds, with the parameters of E and C fixed. For the train-
ing, we apply the loss function with adversarial supervision
of P̂ , and reconstruction requirement for both P̄ and P̂ :

L = αLadv(P̂ ) + Lrec(P̂ , P ) + Lrec(P̄ , P ), (11)

where α is a weighting parameter, setting as 0.2 in our paper.

Experiments
Experimental Setup
Implementation. We implement the manifold auto-encoder
using FoldingNet (Yang et al. 2018) in PyTorch. Specif-
ically, the mapping representation θP is denoted with
the codeword in size of 1 × 1024, and the parame-
ter plane is denoted with a 45×45 point grid in the
range of [−0.3, 0.3]. For TPS transformation, we use 4×4
control points. The offset prediction network Fo is im-
plemented with MLP (3→64→128→1024)-MaxPool-FC
(1024→512→256→32)-Tanh to predict the offsets of con-
trol points along two axes in the range of [−1.0, 1.0]. Both
the pretrain of manifold auto-encoder and the training of
manifold attack framework are performed on a workstation
with one NVIDIA RTX 2080Ti GPU for 1000 epochs.
Datasets. We adopt two public datasets for evaluation:
ShapeNet Part (Chang et al. 2015) and ModelNet40 (Wu
et al. 2015). We select 14007 point clouds for training and
2874 for testing on ShapeNet Part, while 9843 for training
and 2468 for testing on ModelNet40 following (Qi et al.
2017b). To fit our manifold attack framework, we randomly
sample 45× 45 = 2025 points from each point cloud.
Attack Methods. We compare our manifold attack frame-
work (Ours) with ten baseline methods, including the
deletion-based method, e.g., Drop-400 (Zheng et al. 2019)
that drops the most critical 400 points, the perturbation-
based methods using gradient, e.g., FGM, I-FGM and
PGD (Dong et al. 2020), the perturbation-based methods
using optimization, e.g., C&W under l2-norm (l2), Cham-
fer distance (CD), Hausdorff distance (HD) constraints (Xi-
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ModelData Defense Attack Method

Drop-400 FGM I-FGM PGD CW
(l2)

CW
(CD)

CW
(HD) GeoA3 AdvPC LG-GAN Ours

Po
in

tN
et

SN

- 44.61 51.61 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.20 96.45
SRS 44.29 46.25 76.34 80.45 41.67 47.66 48.82 72.65 99.60 92.18 96.39
SOR 43.84 10.37 4.53 3.20 3.74 3.52 3.52 12.11 48.05 28.72 90.05

DUP-Net 42.03 8.07 3.30 2.75 3.74 3.71 3.51 8.20 29.49 24.13 86.53
IF-Defense 30.34 8.18 5.18 6.09 6.25 4.88 5.47 9.76 17.38 26.25 66.21

MN

- 59.64 85.26 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.22 93.80
SRS 58.14 80.92 91.69 49.76 53.00 67.19 69.94 81.65 98.87 92.13 93.48
SOR 56.28 33.23 21.20 26.78 13.82 15.63 15.80 42.79 46.19 67.25 87.00

DUP-Net 55.39 27.19 16.29 24.63 12.44 13.09 12.89 7.08 30.31 64.04 86.22
IF-Defense 37.84 21.43 13.80 19.94 13.49 14.84 13.70 6.04 16.77 55.97 81.36

D
G

C
N

N

SN

- 16.25 6.02 79.75 77.97 100.00 100.00 100.00 100.00 77.29 75.41 95.20
SRS 12.39 3.97 44.99 53.06 42.14 12.09 12.08 86.46 48.33 70.29 93.84
SOR 15.03 1.77 10.19 5.46 2.26 2.92 3.13 56.25 11.04 50.17 93.11

DUP-Net 18.55 2.61 3.06 4.00 2.40 3.13 2.97 39.16 8.33 37.64 93.84
IF-Defense 14.93 5.01 4.73 8.56 4.17 4.17 4.58 3.17 12.50 38.41 89.17

MN

- 45.91 51.30 99.96 100.00 100.00 100.00 100.00 100.00 94.58 86.08 97.45
SRS 35.05 40.64 55.71 74.68 31.09 37.11 32.29 77.71 70.63 80.60 94.73
SOR 34.24 26.09 30.39 42.30 11.33 13.18 14.58 52.50 57.08 71.59 95.10

DUP-Net 39.59 26.37 21.15 39.10 11.72 14.84 16.25 33.34 48.12 65.71 94.65
IF-Defense 37.97 22.81 21.13 29.17 17.97 16.79 18.33 28.75 25.00 60.26 90.03

Po
in

tC
on

v

SN

- 16.35 21.56 97.56 98.85 100.00 100.00 100.00 100.00 98.54 61.21 91.06
SRS 15.00 12.94 54.39 86.22 26.67 27.29 26.95 33.84 90.42 55.75 90.29
SOR 17.64 6.12 26.20 24.60 12.71 9.16 8.59 19.14 72.92 50.48 88.83

DUP-Net 22.96 7.16 11.80 24.00 10.83 8.96 5.46 17.97 55.00 46.52 93.35
IF-Defense 13.74 5.57 5.15 9.99 9.17 8.75 6.66 7.42 26.04 34.22 78.25

MN

- 37.12 46.68 100.00 100.00 100.00 100.00 100.00 96.09 98.54 78.04 94.98
SRS 35.09 40.19 95.06 99.43 37.29 28.95 27.77 21.48 93.54 71.88 94.06
SOR 34.44 22.97 59.36 72.77 18.13 17.29 19.16 18.35 91.25 63.88 90.71

DUP-Net 33.55 21.83 29.90 70.34 13.74 14.58 13.33 9.38 76.04 65.17 87.32
IF-Defense 32.82 23.78 25.61 43.76 11.46 10.62 12.08 4.29 35.62 57.77 83.51

Table 1: ASR (%) of different attack methods with and without defense on ShapeNet Part (SN) and ModelNet40 (MN).

ang, Qi, and Li 2019), GeoA3 (Wen et al. 2022) that ap-
plies geometric-aware constraints, AdvPC (Hamdi et al.
2020) whose focus is to achieve high transferability, and the
generative-based LG-GAN (Zhou et al. 2020).
Victim Models. We choose three representative deep clas-
sification models for point clouds to attack, including the
MLP-based PointNet (Qi et al. 2017a), the graph-based
DGCNN (Wang et al. 2019) and the kernel-based Point-
Conv (Wu, Qi, and Fuxin 2019). For the training of these
models, we follow their original papers.
Defense Methods. We adopt four adversarial defense meth-
ods: simple random sampling (SRS), statistical outlier re-
moval (SOR), denoiser and upsampler network (DUP-
Net) (Zhou et al. 2019), and IF-Defense (Wu et al. 2020).
SRS applies defense by randomly dropping 20% points from
the input point clouds, and SOR trims the irregular points
that violate the mean and standard deviation of the nearest
neighbor distances. Based on SOR, DUP-Net further applies
point cloud upsampling to remap off-the-manifold adversar-
ial samples on to the natural manifold. IF-Defense predicts
implicit functions that capture the clean shapes and then re-

store the adversarial point clouds.
Evaluation Setting and Metrics. We choose the optimal
configurations of these adversarial attack methods to achieve
the best attack success rates they could reach. Under this
maximal adversarialness setting (Liu and Hu 2022), we eval-
uate the robustness against defense and the transferability for
fair comparisons. For all performance metrics, we measure
them using the attack success rate (ASR), which is the per-
centage of generated adversarial point clouds that lead the
victim model to make mistakes.

Performance Comparison and Analysis
Attack Performance. The results in Tab. 1 show that Drop-
400 and FGM perform the worst while the others reveal their
strong abilities in attacking models and achieve over 95%
ASR in most cases. In particular, LG-GAN and Ours also
attack these models successfully, but the ASRs are slightly
lower than those of I-FGM, C&W, and GeoA3, due to the
dataset-oriented nature of generation models instead of the
sample-oriented one. AdvPC has similarly lower ASR, due
to the trade-off imposed by auto-encoder for transferability.
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Data Source Target Attack Method

Drop-400 FGM I-FGM PGD CW
(l2)

CW
(CD)

CW
(HD) GeoA3 AdvPC LG-GAN Ours

Sh
ap

eN
et

Pa
rt PointNet DGCNN 14.13 4.46 4.14 4.66 3.75 3.52 3.32 8.20 9.17 40.87 23.94

PointConv 19.17 4.53 4.07 28.57 4.17 4.30 4.59 13.28 26.76 38.72 23.00

DGCNN PointNet 18.72 8.39 37.30 45.38 18.96 17.50 16.45 19.59 53.33 61.84 34.86
PointConv 15.83 11.38 20.04 45.13 15.90 7.50 8.33 16.87 69.17 51.92 71.37

PointConv PointNet 12.32 10.86 5.11 5.95 4.17 4.16 3.91 5.08 6.67 52.25 23.42
DGCNN 6.27 4.91 2.82 3.28 2.92 2.13 2.73 4.30 3.54 39.21 43.04

M
od

el
N

et
40 PointNet DGCNN 25.24 38.13 23.87 37.20 18.31 18.17 19.08 13.33 29.78 86.53 61.84

PointConv 25.69 29.01 16.90 73.50 15.03 15.43 14.95 14.42 17.26 60.91 73.87

DGCNN PointNet 25.49 30.27 17.91 26.63 12.89 13.67 15.42 12.92 18.95 83.60 67.18
PointConv 27.92 34.04 18.44 77.19 9.77 8.59 13.54 13.96 29.79 79.42 87.61

PointConv PointNet 24.47 31.44 18.60 23.34 13.12 13.96 13.54 5.47 17.91 60.60 41.61
DGCNN 25.73 35.41 31.08 34.08 19.58 19.17 18.96 13.28 29.16 65.54 75.21

Table 2: Transferability performance of different attack methods. The transferability is measured by ASR (%) on target models
using adversarial examples that are generated for attacking source models.

Source Target PGD AdvPC LG-GAN Ours

PointNet DGCNN -10.67 -13.09 -25.29 +2.36
PointConv -18.44 -7.09 -9.41 -2.52

DGCNN PointNet -6.65 -2.49 -22.80 +2.17
PointConv -20.47 -8.75 -12.14 -2.34

PointConv PointNet -3.49 -1.66 -9.22 +8.06
DGCNN -5.96 -3.33 +0.49 +5.05

Table 3: Changes on the transferability results of different
attack methods on ModelNet40 after applying SOR defense.

Attack Performance under Defense. The results in Tab. 1
show that the simple SRS can already defend a part of at-
tack methods, while SOR defends almost all strong attack
methods except Ours, AdvPC and LG-GAN. By applying
the powerful DUP-Net and IF-Defense, the ASRs of most
attack methods decrease to below 10%. AdvPC, LG-GAN
and our manifold attack are robust in almost all cases, and
Ours performs the best. Although the ASR of our method
decreases slightly after applying defense, we would like to
remind that nearly 90% adversarial point clouds generated
by our manifold attack can still mislead the victim models
successfully. Therefore, we conclude that our manifold at-
tack has strong undefendability.
Transferability. By comparing the results reported in Tab. 2
and Tab. 1, we can see that adversarial point clouds gener-
ated by most attack methods on source models can hardly
transfer to attack unseen target models, except PGD, Ad-
vPC, LG-GAN and Ours. In particular, LG-GAN has the
strongest transferability, and Ours is the second best.
Transferability under Defense. In real-world scenarios,
deployed models are generally invisible to attackers and
also equipped with defense. Therefore, we further measure
the amplitude changes of the four best methods on trans-
ferability after applying SOR defense and report the val-
ues in Tab. 3. Remarkably, the performance of PGD, Ad-
vPC and LG-GAN drops a lot, e.g., decreases more than

Figure 3: Two real-world scenarios that “generate” manifold
attack results.

10% when transferring from PointNet to DGCNN, indi-
cating their transferability is fragile. Instead, the transfer-
ability of our manifold attack almost maintains, validating
its superiority. Since LG-GAN is also generative-based and
deformation-based, we infer that our strong transferability is
brought by the unique smooth deformation mechanism, in-
stead of simply by generation-based models or deformation.
Special Effect of Manifold Attack. We observe that the
proposed manifold attack can be hidden in the human psy-
che by associating the disturbances in the real world to make
the attacks to be justified similar as the adding of adversar-
ial object, e.g., AIRPLANE, in (Xiang, Qi, and Li 2019). The
CAP can be captured if some pressures, e.g., gravity, are ap-
plied to the top of it, and the SKATEBOARD can be captured
if textile is put on it in the real world; see Fig. 3.

Indeed, 3D objects that appear in the real world will not
be exactly the same as those in the model library. Besides,
since noises are introduced by depth-sensing devices, their
differences with the model library will be further enlarged.
Both factors make the perturbation applied by our manifold
attack justified. Therefore, humans may not notice our at-
tacks.
Visualization. We visualize the point clouds generated by
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Figure 4: Visualization of original point clouds and the corresponding adversarial point clouds generated by different attack
methods for attacking PointNet. The predicted categories before and after attack are: (a) AIRPLANE → SKATEBOARD, (b)
SKATEBOARD → TABLE, (c) CAP → TABLE, (d) CHAIR → LAPTOP, (e) TABLE → CHAIR, (f) LAMP → DRESSER, (g) SINK
→ BATHTUB. The top five shapes are from ShapeNet Part, while the remaining two shapes are from ModelNet40.

Figure 5: Visualization of parameter planes and the corresponding adversarial point clouds w/ and w/o using TPS.

both manifold and non-manifold adversarial attack methods
for attacking PointNet on ShapeNet Part and ModelNet40 in
Fig. 4. It could be seen that most adversarial point clouds
generated by non-manifold attack methods have clearly vis-
ible outliers. Although GeoA3 utilizes geometric properties,
e.g, curvature, to restrict the perturbation, and LG-GAN en-

forces the points to be adjoined to the manifold shape by
applying generative adversarial networks, outliers are still
existed in their generated point clouds to obtain adversarial-
ness. Differently, adversarial point clouds generated by our
manifold attack are much more smooth, only with tiny shape
deformation, validating our intuition.
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CP 2×2 4×4 8×8 16×16
ASR 95.79 96.45 96.14 96.21
HD 0.039 0.033 0.038 0.038

Table 4: ASR (%) and HD vs. the number of control points
(CP) in TPS for attacking PointNet on ShapeNet Part.

Figure 6: ASR (%) of our manifold attack on PointNet under
different defense methods with and without TPS.

Ablation Studies and Analysis
Control Point Number. We evaluate four configurations
of control points in TPS for attacking PointNet on the
ShapeNet Part dataset. The results reported in Tab. 4 show
that all four configurations can support manifold attack. In
particular, 4×4 control numbers is the best for both attack
performance and distortion.
TPS for Parameter Plane Stretching. To better demon-
strate how TPS helps to control the stretching, we visualize
the deformed parameter planes and the corresponding ad-
versarial point clouds with and without applying TPS. The
results in Fig. 5 show that the parameter planes will be un-
evenly stretched if without using TPS, and the resulting ad-
versarial point clouds will deform dramatically, validating
the usefulness of TPS.

To validate the usefulness of utilizing TPS transforma-
tion to control the stretching, we compare the results with
the framework that predicts offsets of all the points on the
parameter plane directly, without using TPS. The results in
Fig. 6 show that the ASR of our framework will drop if with-
out TPS in all cases, validating the effectiveness and neces-
sity of utilizing TPS to control parameter plane stretching.

Conclusion
This paper has proposed a novel manifold attack which
deforms the underlying 2-manifold surfaces of 3D point
clouds. The key idea is to build the mapping between param-
eter plane and surface first, and then deform the surface by
stretching parameter plane. Extensive experiments validate
that adversarial point clouds generated by manifold attack
are smooth, undefendable and transferable. We hope this
work inspire more studies on manifold-aware deep learning
models for point clouds.
Limitations and Future Work. Even though our manifold
attack can simulate the disturbances in the real world, it is
still challenging to deploy physical attack. In the future, we
plan to explore simulation-to-reality transfer of digital ad-
versarial point clouds into real-world objects.
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